| 1 | ||
x2 + y2 + z2 ≥ | . | |
| 3 |
| x2+y2+z2 | x+y+z | |||
√ | ≥ | |||
| 3 | 3 |
| x2+y2+z2 | 1 | |||
≥ | ||||
| 3 | 9 |
| 1 | ||
to: x2+y2+z2 ≥ | ||
| 3 |
f(x, y, z) = x2 + y2 + z2, x+y+z = 1
Znajdziemy punkt, dla którego wartość funkcji f jest najmniejsza.
G(x, y, z) := x+y+z−1
L(x, y, z, λ) := x2 + y2 + z2 − λ(x+y+z−1)
| ∂L | ||
= 2x − λ | ||
| ∂x |
| ∂L | ||
= 2y − λ | ||
| ∂y |
| ∂L | ||
= 2z − λ | ||
| ∂z |
| ∂L | ||
= x+y+z−1 | ||
| ∂λ |
| λ | ||
x = y = z = | ||
| 2 |
| 1 | ||
x = y = z = | ||
| 3 |
| 1 | 1 | 1 | ||||
P0 = ( | , | , | ) | |||
| 3 | 3 | 3 |
| 1 | 1 | 1 | 1 | |||||
f(P0) = | + | + | = | . | ||||
| 9 | 9 | 9 | 3 |
| 1 | ||
A zatem, najmniejsza wartość funkcji f to | . c.k.d. ![]() | |
| 3 |
(x−y)2 ≥0 => x2+y2 −2xy ≥0 => x2+y2 ≥2xy ( to jasne)
x2+y2+z2= (x+y+z)2 −2xy−2xz−2yz=1 −2xy−2xz−2yz≥ 1− (x2+y2+x2+z2+y2+z2)
zatem: x2+y2+z2 ≥1 −(x2+y2+x2+z2+y2+z2)
3(x2+y2+z2) ≥1
| 1 | ||
to: x2+y2+z2 ≥ | ||
| 3 |
A mnie ten pierwszy, bo mniej obliczeń .
pozdrawiam